

TECHNICAL NOTE N° 12

POLICY AND REGULATORY FRAMEWORK FOR THE ENERGY TRANSITION IN THE CARIBBEAN

Energy Join us

This document was prepared under the direction of the Latin American Energy Organization (OLADE)

Andrés Rebolledo Smitmans

Executive Secretary

Prepared by

Tatiana Castillo OLADE's Legal Advisor

Quito, Ecuador

Table of Contents

1.	INTRODUCTION	2
2.	EVOLUTION OF ENERGY POLICIES	2
3.	EVOLUTION OF ENERGY LAW IN THE ENERGY TRANSITION	4
4. FR	KEY ELEMENTS OF A TRANSITION-FRIENDLY POLICY AND REGULATORY	
FR	PROGRESS AND PROSPECTS OF THE POLITICAL AND REGULATORY RAMEWORK OF THE CARIBBEAN STATES IN THEIR ENERGY TRANSITION ROCESSES	7
1	5.1 Cross-cutting parameters for the formulation of public policies and regulatory frameworks aimed at the energy transition and the progress achieved by the State of the Caribbean subregion	
	5.1.1 Energy Policy	7
	5.1.2 Regulatory Framework	18
6.	CONCLUSIONS	27
7.	BIBLIOGRAPHY	29

Policy and Regulatory Framework for the Energy Transition in the Caribbean

1.INTRODUCTION

An energy policy favorable to the energy transition, in addition to promoting decarbonization through the transformation towards new models of energy production and consumption, also promotes sustainable economic development, guarantees access and energy security and promotes social justice in the energy sector.

For its effective implementation, energy policy requires a regulatory framework consistent with the objectives and targets set out in the established strategies and lines of action, which harmonizes tax incentives with investment incentives, technical standards, transparent bidding mechanisms, and a well-structured institutional framework geared toward meeting the ambitious goals set for the incorporation of renewable sources and the corresponding decarbonization of the sector by 2030.

This study aims to review the transformation process undergone by public policies in the energy sector, from their traditional designs to the current policies geared toward energy transition; the resulting evolution from energy law to energy transition law; analyze, using a comparative approach, the current situation of energy policy and regulatory instruments in the OLADE member countries located and/or considered in the Caribbean subregion; and, based on the information obtained, to establish an opinion that allows for determining the degree of progress in the implementation of the political and regulatory framework for the transition in accordance with the objectives and goals established by these countries in their respective paths toward decarbonization of the energy sector, based on the fundamental elements and cross-cutting parameters that must be considered in the formulation of public policies and regulatory frameworks aimed at energy transition.

2.EVOLUTION OF ENERGY POLICIES

The evolution of traditional energy policies towards current energy transition policies reflects a profound change in the environmental, economic, and social priorities of states, influenced by the climate crisis among other factors such as the decreasing costs of renewable energies, scientific and social pressure based on the need to reduce greenhouse gas emissions generated by energy production and consumption activities, and the emergence of new development strategies in response to the progressive depletion of fossil resources.

Depending on its geopolitical context, characteristics and objectives, this process goes through the following stages:

2.1. Traditional energy policies (20th century – early 21st century)

They emerge in the so-called post-World War II oil era, they face the oil crisis of the 1970s and this situation urges them to begin establishing guidelines for the diversification

of the energy matrix. In some countries, the nuclear source is considered as a strategic alternative in the face of new challenges.

They focus on ensuring: security of supply, economic growth from energy as the fundamental basis of industrialization, the extension of networks to ensure access and affordability to electricity, and the continuous supply of fossil fuels (coal, oil, natural gas).

They are based on centralized models with large power generation plants, infrastructures for the transformation and transport of hydrocarbons such as refineries, thermal power plants, pipelines, etc.

They are characterized by a high presence of fossil fuel subsidies and little environmental concern.

2.2 Policies that paved the way for change: influenced by a growing environmental awareness and the first signs of climate change (1980s–2000)

Influences are seen by the Brundtland Report (1987) that introduces the paradigm of sustainable development and the Kyoto Protocol (1997) as the first international treaty against climate change.

They reflect greater knowledge about the impacts of CO₂ and global warming.

They establish lines of action aimed at encouraging the incorporation of renewable energies (solar, wind, hydroelectric) into the energy matrix, improving energy efficiency and promoting the liberalization of electricity markets.

2.3. Policies for the energy transition: strongly conditioned by the Paris Agreement and the United Nations Sustainable Development Goals (2015 to present)

They are part of the commitments made under the Paris Agreement (2015), and are based on the consolidation of the concept of energy transition as a key element of the global strategy to limit global warming. They are seen as an opportunity to create jobs, modernize economies and reduce energy poverty.

Challenging goals have been set to reduce greenhouse gas (GHG) emissions, achieve carbon neutrality in the second half of the 21st century, decarbonize the energy matrix by progressively replacing fossil fuels with renewable sources, increase energy efficiency, reduce energy consumption in sectors such as transportation, industry, and buildings, guarantee energy security and sovereignty, diversify energy sources and reduce external dependence, advance universal and affordable access to energy, combine sustainability with social justice, promote innovation and sustainable economic development, and foster new industries and green jobs, among other related and connected objectives.

As for its main characteristics, we can highlight its multisectoral approach (agriculture, urban planning, transport, industry, etc.) based on renewable energies, long-term planning with intermediate goals, the assessment of the social and economic component, intensification of the use of electricity (electromobility, heating with clean electricity, etc.), the participation of new public, private and social actors in decision-making, and the implementation of economic incentives and regulations on green subsidies, carbon taxes, efficiency standards, carbon markets, etc.

3.EVOLUTION OF ENERGY LAW IN THE ENERGY TRANSITION

Still in its consolidation phase as an independent branch of law, in 2010¹ Energy Law faces a new challenge: adapting and responding to the needs of the energy transition. This implies a significant challenge to meet the need to provide, in a timely manner and with the required technical quality and operational viability, a regulatory framework that provides low-emission energy solutions without affecting access to energy services and products in a safe, affordable, and sustainable manner in harmony with the environment; and thus evolve into a branch of law that deals with regulating sustainable energy development.

Among the fundamental changes that energy law has had to undergo to adapt to the needs of the energy transition are the following:

- 1. Incorporation of environmental considerations such as climate change.
- 2. Promote the decarbonization of the energy industry.
- 3. Adaptation of its legal, normative and regulatory instruments, as well as those of energy policy and planning to the international commitments assumed by States within the framework of international treaties and instruments such as the Paris Agreement (keep the increase in global temperature below 2°C in relation to preindustrial levels and limit the increase in temperature to 1.5°C by 2050).
- **4.** Provide regulatory, economic and fiscal incentives for the intensive incorporation of renewable energies into the energy matrix.
- **5.** Promote the investment and development of technologies essential for the advancement of the energy transition such as smart grids, storage systems, artificial intelligence applications, etc.
- **6.** Regulate carbon markets.
- **7.** Ensure that the burden of costs and the impact of the benefits of the energy transition are equitably distributed.
- 8. Implement policy instruments, planning and regulatory frameworks aimed at mitigating the negative impacts that occur in the labor sector and populations linked to the hydrocarbon industry (training and labor insertion programs in other sectors fundamental to the energy transition, citizen participation in energy decision-making).
- **9.** Promote the efficient use of energy, by economically reducing the amount of energy needed to meet energy requirements, ensuring an equal or higher level of quality and comfort, as well as a decrease in negative environmental impacts.

¹ In 2010, the World Energy Council (WEC) introduced the so-called Energy Trilemma, as an instrument to assess countries' efforts to achieve three fundamental objectives in their energy systems: energy security, energy equity and environmental sustainability.

- 10. Regulate the activities of the energy chain impacted by the intensification of the use of electricity as an energy carrier such as electromobility, distributed generation, storage, reconversion of infrastructure, modernization of electricity grids, introduction of technological advances, electrification of industrial processes, etc.
- 11. Regulate investment in the development and implementation of technologies so that activities linked to the hydrocarbon energy chain are less polluting (encourage the gradual transition to alternative and less polluting fuels such as natural gas, biofuels, etc. new generation fuels, limit the content of sulfur and other pollutants in refining, promote the use of additives in fuels to reduce emissions, enhance sustainable mobility, etc.).
- 12. Legislate on new sources and emerging issues in the framework of the transition: critical minerals and rare earths, low-emission hydrogen, stability of electrical systems, energy oversupply (discharges), energy storage (batteries), offshore wind, nuclear power (SMR), integration and interconnection, etc.

Across the board, energy law in its transformation towards energy transition law has also had to deal with establishing regulations on the financing of the investments required for the transition (creation of funds, subsidies, tax incentives and exemptions, soft loans, guarantees, schemes such as feed-in tariffs and green bonds to promote renewables, regulatory frameworks to guide private investment towards green activities, etc.); the design, approval, and implementation of policies and plans for the energy transition; the protection of the rights of consumers who are also beginning to take on the role of producers (prosumers); the incorporation of a gender perspective in the sector; among other elements aimed at meeting the new regulatory needs of the transition.

4.KEY ELEMENTS OF A TRANSITION-FRIENDLY POLICY AND REGULATORY FRAMEWORK

Having a political and regulatory framework consistent with the objectives set in the energy transition process is a fundamental requirement for meeting the goals and commitments assumed in terms of decarbonization and achieving an efficient, sustainable and fair transformation of the national energy sectors.

A well-structured legislative, policy and regulatory framework provides the necessary legal, institutional and operational conditions to ensure that energy policy is implemented with legitimacy, efficiency and sustainability such as:

Legal support: it endorses the legal basis of the energy policy, granting it legitimacy and reducing the risks of legal, regulatory and normative conflicts, thus favoring the social acceptance of the proposal; and determining the rights and obligations of the parties involved in the energy chain.

Determination of responsibilities: establishes competencies and functions of the institutions responsible for designing, approving, implementing, monitoring and evaluating the policy, avoiding duplication of actions or operational and administrative gaps, facilitating inter-institutional coordination. Additionally, it reduces discretion and

improvisation in decision-making by determining clear and specific functions and procedures in terms of energy policy.

Transparency and predictability: Determine clear rules with some stability over time in order to ensure that the actors linked to the activities of the energy chain can foresee the behavior of the State, a situation that instills confidence and decreases uncertainty.

Effective implementation: Guarantees the design, approval and execution of the operational instruments necessary for the implementation of the provisions established in the energy policy, such as laws, decrees, regulations, regulations, technical standards, procedures, incentives, sanctions, etc.

Monitoring, control and accountability: Enables the evaluation and supervision of the implementation of the guidelines contained in the policy, through the application of control, audit, accountability and, where appropriate, sanctions mechanisms, which has a positive impact on ensuring the transparency and accountability of the policy compliance process.

Capacity for adaptation and continuous improvement: It provides for mechanisms for periodic review and adjustments, in order to ensure permanent coherence between policy and regulation, allowing the evolution of policy to be reflected in the regulatory framework and not to fall into obsolescence.

A regulatory framework that complies with these elements guarantees the effective viability of the implementation of the energy policy, preventing legal, institutional and social obstacles from obstructing the materialization of the expected impacts.

One of the main challenges facing the Latin American region in general and the Caribbean subregion in particular lies in the difficulties in accessing the resources required to finance the transition. A coherent political and regulatory framework, with explicit and consistent provisions, predictable and with a certain permanence over time, guarantees a favorable environment for investors and cooperators since it promotes legal certainty and contractual stability providing certainty and therefore reducing the risks of abrupt changes in the operating rules of the energy sector, attracting national and foreign capital, as well as cooperation funds.

The design, approval, and implementation of policies, strategies, plans, and regulatory frameworks focused on the decarbonization of the energy sector is an exercise of state sovereignty that reflects the geopolitical reality of each country and and corresponds to its circumstances, perspectives, interests, national priorities, international commitments and agreements, levels of development, endowment and availability of energy, technological, financial, budgetary, and infrastructure resources, among other legal, regulatory, economic, institutional, and conditions of access to energy sources and capital that affect the national energy transition process.

Although energy transitions are not uniform or universal processes, as they depend on the particularities of each national, subregional, and regional context, there are certain parameters common to all policies and regulatory frameworks aimed at promoting energy transition processes focused on the progressive reduction of fossil fuel use in energy generation to advance the reduction of greenhouse gas emissions and thus mitigate the adverse impacts of climate change caused by global warming.

In order to guarantee the expected results in each transition path established at the national level, energy policy and the regulatory framework must be aligned, consistent

with the intended objectives, and establish effective mechanisms supported by a comprehensive approach between policy guidelines, strategy and planning, and legal, regulatory, and normative provisions.

Based on these elements, this comparative law study analyzes the level of progress and the challenges presented by the OLADE Member Countries of the Caribbean subregion, in terms of the design, approval and implementation of policy and regulatory frameworks on which their energy transition processes are based.

5. PROGRESS AND PROSPECTS OF THE POLITICAL AND REGULATORY FRAMEWORK OF THE CARIBBEAN STATES IN THEIR ENERGY TRANSITION PROCESSES

5.1 Cross-cutting parameters for the formulation of public policies and regulatory frameworks aimed at the energy transition and the progress achieved by the States of the Caribbean subregion

5.1.1 Energy Policy

a) Promotion of the incorporation of renewable energies into the energy matrix (vision, objectives, and goals): Energy policy must have specific objectives and clear guidelines aimed at achieving concrete goals for the incorporation and participation of renewable sources in the energy matrix, based on the country's real possibilities and interests in terms of the time and resources to be invested in the decarbonization of the sector.

All OLADE Member States considered in the Caribbean subregion have policy instruments that expressly determine a vision with clear objectives and concrete goals for the incorporation of renewable energy sources in the energy matrix.

Barbados: The Barbados National Energy Policy (BNEP) 2019–2030, is aimed at achieving a 100% renewable and carbon neutral energy system by 2030, with objectives of diversification, efficiency, electric mobility and distributed storage. Barbados aims for 95% of its electricity to come from renewable sources by 2030, and for the share of renewable technology in the mix to increase to 65%. The National Energy Policy 2017–2037 is also in force, covering a broader approach towards energy sustainability.

Belize: The Belize National Energy Policy 2023-2040 approved on November 1, 2023, defines the roadmap for a sustainable, secure and affordable energy future in Belize. It sets out strategies to achieve international emission reduction targets (NDCs), promote energy efficiency, biofuels and waste-to-energy projects, and support private investment in clean energy. It sets ambitious goals, aimed at achieving 75% renewable energy in the energy matrix by 2030, by promoting distributed generation (especially solar), encouraging biofuel and waste management projects with energy production; and

creating incentives for efficient product labeling and bioenergy generation. The 2012-2033 National Sustainable Energy Strategy, in force since 2012, focused on the export of clean energy, on the expansion of hydroelectric capacity from 55 MW to 70 MW by 2033, and the progressive replacement of the use of firewood in rural areas by clean technologies such as solar cookers or biogas, also remains in force.

Cuba: The Policy for the Prospective Development of Renewable Sources and the Efficient Use of Energy 2014–2030, approved on June 21, 2014, establishes objectives aimed at achieving 24% of renewable energy in the energy matrix, reducing dependence on imported fuels and reducing emissions. In addition, the National Strategy for the Energy Transition in Cuba, published in September 2024, contains elements focused on updating the Policy within the framework of the transition, and setting precedents for a future Energy Transition Law, which is expected to come into force in 2025. This strategy is based on the provisions established in Decree-Law No. 345, in force since November 28, 2019, in which it establishes the policy for the development of renewable sources and the efficient use of energy in Cuba, as well as the determinations for its implementation through the definition of a legal framework that facilitates foreign investment in the energy sector, and promotes the national production of equipment and means for the development of renewable sources and energy efficiency.

Grenada: The National Energy Policy of Grenada, in force since 2011, establishes objectives aimed at guaranteeing access to clean, sustainable and affordable energy sources, promoting energy efficiency and reducing dependence on fossil fuels.

Guyana: The Low Carbon Development Strategy 2030 (LCDS 2030) approved by Resolution No. 45/2022 is the guiding document that consolidates the goals of energy transition, environmental protection and sustainable economic development in Guyana until 2030. It contains guidelines aimed at diversifying the energy matrix with solar, hydro, gas, wind and promoting energy efficiency.

Haiti: The National Energy Sector Development Plan 2007-2032 is the official document that establishes Haiti's energy transition policy. According to its Nationally Determined Contribution (NDC) under the Paris Agreement, Haiti is committed to achieving by 2030: 47% of the energy matrix in renewable sources, with specific distributions. Its specific objectives include providing electricity for at least 12 hours a day throughout the country, reducing technical and commercial losses, promoting renewable energies (solar, wind, hydroelectric, biofuels), reducing dependence on wood energy, converting to diesel/biodiesel/LPG, planting energy forests and supporting cellulosic briquettes.

Jamaica: The National Energy Policy 2009–2030 is the long-term instrument that promotes energy security, diversification of sources, development of renewables, energy efficiency, infrastructure modernization and regulatory governance. Additionally, Jamaica has the National Renewable Energy Policy 2009-2030: a complementary subsectoral instrument that defines clear objectives for incorporating renewable energy (20% of the mix by 2030) and introduces enabling measures for its integration; also, they have the National Electric Vehicle Policy approved in June 2023 to promote electromobility, with fiscal incentives and a strategic plan to incorporate electric vehicles.

Dominican Republic: The National Development Strategy (END)2010-2030 established pursuant to Law 1-12,of January 25, 2012, considers energy sustainability as one ofthe essential pillars of development asdetermined in its General Objective 3.2: "Reliable, efficient and environmentally sustainable energy", which explicitly sets the goal

of ensuring areliable, efficient electricity supply, at competitive pricesandunder environmentally sustainable conditions through lines of action aimed at: promotingthe diversification ofgeneration sources, especially through renewable energies such as solar and wind, demanding strict environmental regulation in electricity generation, oriented to sustainable practices and mitigation of climate change, promoting a culture of energy efficiency in the citizenry and the business sector.

Suriname: The National Energy Policy 2013–2033 is aligned with the SE4ALL initiative, prioritizing universal access, energy efficiency and the increasing use of renewables. In its updated National Determined Contribution (NDC) in 2020, it sets the goal of achieving at least 25% renewable energy by 2025 and 35% by 2030, maintaining this threshold in the long term.

Trinidad and Tobago: The National Environment Policy (2006, revised in 2018): declares the promotion of renewable energies (solar, wind, biogas) and energy efficiency, introduction of standards, green taxes, GHG inventories, and air pollution regulations. For its part, the National Climate Change Policy (adopted in 2011) includes targets to accelerate the implementation of renewable energy and meet the commitments made in the Paris Agreement.

b) Progressive decarbonization of the energy sector: The policy instrument must enable the establishment of emission reduction targets aligned with international climate commitments, contain provisions aimed at ensuring compliance, as well as determine guidelines to regulate the use of fossil fuels, promoting their progressive replacement and creating mechanisms for such purposes as carbon markets. Likewise, in the case of Caribbean countries that produce and import natural gas (considered a transition fuel that reduces the intensity of emissions from the energy sector and is a viable, affordable, and reliable option for accelerating the decarbonization process in some economies), it is essential that the policy includes lines of action focused on investment in technology to achieve less polluting processes in activities related to the exploitation and use of hydrocarbons.

Barbados: It is proposed to achieve zero domestic consumption of fossil fuels economically, reach 100% renewable electricity and carbon neutrality by 2030. As part of its Nationally Determined Contribution (NDC), it seeks a 44% reduction in greenhouse gas emissions from the BAU scenario by 2030, to achieve Net Zero Emissions (NZE) by 2035.

Belize: It is committed to achieving net zero emissions by 2050. It plans to avoid a cumulative total of approximately 5,647 KtCO $_2$ e between 2021 and 2030, covering all key sectors such as land use, agriculture, energy and waste management. The goal was set to achieve 75% of electricity generation from renewable sources by 2030, avoid 19 KtCO $_2$ e/year through energy efficiency improvements (reduction of losses and consumption) equivalent to at least 100 GWh/year in efficiency by 2030, avoid 44 KtCO $_2$ e/year by expanding renewable energy in the electricity mix, and in the transport sector, reducing 117 KtCO $_2$ e/year by 2030 through a 15% decrease in fossil fuel use and a 15% improvement in efficiency per passenger-km/ton-km.

Cuba: To achieve the objectives and goals established in the National Strategy for the Energy Transition, three stages are foreseen: to meet in 2030 the goals scheduled to reach 24% share of renewable energy sources in the electricity generation matrix, to

achieve in 2035 electricity independence (national fuel plus renewable sources) and to materialize in 2050, the vision of 100% generation from renewable sources.

Grenada: The Government made a commitment to reduce its greenhouse gas emissions by 30% from 2010 levels by 2025, with an indicative reduction of 40% by 2030, in line with its Nationally Determined Contribution (NDC). Specifically in the electricity sector, it is expected to reduce 30% of CO₂ by 2025, integrating at least 10% of renewable generation, including 10 MW of solar energy, 15 MW of geothermal energy and 2 MW of wind energy, and through a 20% improvement in energy efficiency in buildings. By 2030, it is projected to expand renewable share between 30% and up to 100% of electricity generation, in line with its vision of a green energy matrix.

Guyana: As part of its Low Carbon Development Strategy, Guyana is committed to achieving net zero emissions by 2050. By 2030, it is planned to incorporate more than 500 MW of new energycapacity,including 300 MW of Gas-to-Shoreand165 MW of the Amaila Falls hydroelectric project, together withsolar parks andsmallhydroelectric projects, inorder to achieve that 70% of its energy matrixcomes from renewableorlower-emission sources, reducing emissions in the electricity sector bymore than 70%, while progressively eliminating the use of imported heavy fuel oiland diesel.

Haiti: In its Nationally Determined Contribution (NDC, presented in June 2022), it is proposed to achieve that, by 2030, 47% of electricity generation capacity comes from renewable sources, with specific goals for each technology: 24.5% hydroelectric, 9.4% wind, 7.5% solar and 5.6% biomass. In addition, the country has committed to reduce the use of plant-based fuels (such as charcoal) by 32%, promoting cleaner and more efficient energy technologies such as ecological stoves and improved stoves.

Jamaica: It has an ambitious roadmap towards the decarbonization of the electricity sector, with the goal of generating 50% of its electricity from renewable sources by 2030 (approximately 520 MW). This target exceeds a previous target of 20-30% initially set for that same year within the framework of the National Energy Policy Vision 2030.

Dominican Republic: In its 2020 Nationally Determined Contribution (NDC), it has an emission reduction target of 27% by 2030 (7% unconditional compliance and 20% conditional on external financing), and aspires to reach carbon neutrality by 2050. The Energy Transition Program plans to double renewable capacity by 2028, incorporating more than 30 new projects and overnight energy storage to improve system stability.

Suriname: According to its updated Nationally Determined Contribution (NDC), it has set a goal that at least 35% of its energy matrix comes from renewable sources (hydroelectric, solar and waste conversion) by 2030. By 2060, it aims to migrate its electricity generation completely to renewable sources, progressively reducing its dependence on diesel and other fossil fuels. In this context, its decarbonisation strategy is committed to maintaining more than 93% of forest cover as a natural carbon sink.

Trinidad and Tobago: The government is committed to reducing its cumulative greenhouse gas (GHG) emissions by 15% by 2030, based on projected 2013 levels, equivalent to a decrease of around 103 million tonnes of CO₂ -equivalent from the power generation, heavy industry and transport sectors. As part of its energy strategy, it plans to develop commercial-scale solar projects. and in the medium and long term, through the "Roadmap for a green hydrogen economy," it plans to reach 25 GW of offshore wind energy by 2065, with an annual production of 4 million tons of green hydrogen, which

will replace the gray hydrogen currently used in the petrochemical industry and contribute to the sector's zero emissions target for that year.

c) Planning: Considering its status as an instrument that guarantees policy implementation, it is essential to incorporate short-, medium-, and long-term planning into the energy transition, medium, or long-term planning into the energy transition, according to each country's planned timeline, in order to promote the penetration of renewable energies into the energy matrix and thus implement government decisions aimed at achieving the energy model set out in the public policy established for the energy sector. This will facilitate consistency between objectives and actions in accordance with the planned national strategy and priorities, and guarantee the stability, predictability, and sustainability of the policy in the long term. Likewise, it is productive to incorporate subsectoral policies for the energy transition such as climate, transport and urban planning policies.

Barbados: The Barbados Energy Transition and Investment Plan, launched in March 2025, aims to achieve Net Zero Energy (NZE) by 2035, through a 67% reduction in emissions between 2025 and 2030, combining renewables, energy efficiency and massive adoption of electric vehicles.

Grenada: The Small Scale Independent Energy Producers Program (SSIPP): Launched in 2021, it has granted licenses to investors to operate small-scale solar plants, promoting energy diversification. On the other hand, the Caribbean Efficient and Green Energy Buildings Project (CEGEB): With an investment of \$61.8 million, it finances the implementation of energy efficiency measures in public buildings, energy storage and development of renewable sources at the scale of public services.

Haiti: As a complement to the policy, the Haitian Program for Rural Communities' Access to Solar Energy, launched in 2020, is focused on developing solar mini-grids in rural areas.

Jamaica: The Integrated ResourcePlan IRP-2, approved in November 2024, is a national roadmapto transformthe national electricity system by setting a target of achieving 50% electricity generationfrom renewable sources by 2030, prioritizing solar, wind, hydro and battery storage systems.

Dominican Republic: The National Energy Commission (CNE) published a draft of the National EnergyPlan (PEN)2025-2038, which is inpublicconsultation and outlines the strategies for sustainability, resilience and diversification of the energy matrix for the comingyears.

d) Environmental sustainability: An energy policy aimed at achieving progress in energy transition must expressly include guidelines focused on reducing greenhouse gas emissions and therefore must be aligned with the international commitments assumed in this regard such as those generated from the ratification of the Paris Agreement.

Belize: The National Energy Policy (2023) includes guidelines aimed at improving energy efficiency, promoting bioenergy and Waste-to-Energy projects in order to contribute to the Nationally Determined Objectives (NDCs) under the Paris Agreement, and additionally contemplates a system for monitoring emissions in coordination with other agencies.

Cuba: The National Strategy for the Energy Transition in correspondence with the Sustainable Development Goals, aims to contribute significantly to the fulfillment of

nationally determined commitments in terms of reducing polluting emissions and mitigating climate change. Expressly aiming to reduce polluting emissions and the environmental footprint of the energy sector.

Guyana: The 2030 Low Carbon Development Strategy determines lines of action aimed at environmental protection and sustainable economic development in Guyana.

Dominican Republic: The National Development Strategy (2030) establishes as a strategic pillar the adaptation to climate change, the inclusion of a culture of sustainable consumption and environmental management

e) Diversification for energy security: The policy must focus on the diversification of the matrix not only to reduce dependence on fossil or imported fuels and avoid emissions but to guarantee energy security in the face of the intermittency of renewables.

Barbados: The Barbados National Energy Policy (BNEP) 2019–2030, expressly includes guidelines focused on the diversification of the energy matrix with a view to achieving that 95% of its electricity comes from renewable sources by 2030, and that the percentage of renewable technology in the mix increases to 65%.

Belize: The National Energy Policy 2023 and the energy sustainability strategy establish guidelines aimed at diversifying the energy matrix from hydroelectric source, biomass, solar and waste, with the aim of reaching 75% renewable energy by 2030 and reducing imports and intermittency based on energy storage (BESS) and backup plants.

Guyana: The 2030 Low Carbon Development Strategy contains guidelines aimed at diversifying the energy matrix from solar, hydro, gas, and wind sources.

f) Open access to infrastructures: A policy aimed at the energy transition must include specific guidelines to facilitate open and non-discriminatory access to essential energy infrastructures, such as electricity grids, transmission and distribution systems, and recharging stations for electric mobility. These guidelines must guarantee transparency in terms of access conditions, set regulated and fair tariffs, promote competition between traditional actors and new market participants, and encourage investment in sustainable and resilient infrastructure. It is also critical that the policy sets guidelines for structuring inclusive governance mechanisms, ensuring the participation of local communities, businesses, and regulatory authorities to ensure an equitable, efficient, and end-user-centric transition.

Barbados: Energy policypromotes the maximization of local participation in distributed energy generation (energy democratization). Private generator access is formalized with clear licenses and guidelines posted online.

Belize: Energy policy in its goal to achieve 75% renewables by 2030 drives PV and storage projects with grid investment and local systemautonomy, and promotes domestic and independent generation to reduce dependence on external supply.

Guyana: Promotes the participation of Independent Producers (IPPs) through transparent licenses and regulations, promoting projects under competitive tenders and PPA agreements. In 2022, it launched a pilot net billing program in which prosumers can offset surplus energy exported to the grid through standard contracts that pay 90% of the residential rate.

Jamaica: Distributed generation is supported by the IRP - 2 National Resource Plan (November 2024), which promotes renewables, storage and transmission improvements with tenders and planned access to the electricity system.

Suriname: Through the net metering system, consumers can generate their own energy and send surpluses to the grid at no additional cost, recovering value from the exported energy. There are rural electrification programs that include solar microgrids with storage for indigenous communities, integrating into the national distribution system.

g) Increasing the resilience of the energy system to external shocks: the energy policy instrument must contain provisions aimed at strengthening the resilience of the energy system to external shocks, such as natural phenomena, geopolitical crises, local conflicts, market fluctuations, cyber threats to smart grids, power plants, etc. To this end, it is essential to diversify energy sources, promote distributed and local generation, invest in robust and adaptable infrastructure, and promote the development of clean and modern technologies, as well as energy storage systems. In addition, long-term planning tools are required that foresee risk scenarios and guarantee a coordinated and effective response to contingencies, ensuring a continuous, safe and sustainable energy supply.

Barbados: Through the implementation of the Roofs to Reefs (R2RP) program promotes the development of hurricane resistant infrastructure: reinforced roofs, drains, emergency storage, distributed energies with internal storage. Additionally, work is being done on the installation of solar systems with batteries in health clinics to guarantee medical cooling during storms. There is an innovative system of debt financing for climate resilience, which frees up resources for investments in critical infrastructure resistant to extreme weather events.

Belize: Energy policy aims to reach 75% renewables by 2030, reducing vulnerability to imports and adverse weather events. In February-March 2025, the IFC assumed the role of leading advisor on a 50–80 MW solar PPP project, with storage battery integration (40 MW) and term until 2027, which is part of the strategy to increase renewable generation by 75% by 2030, targeting about 180 MW installed of solar by 2042. On the other hand, a joint project with the World Bank and Canada, for USD 58.4 million, seeks to deploy distributed batteries (4×10 MW) in several districts to improve resilience and facilitate renewable integration, with the aim of bringing renewable generation to 85% by 2030.

Cuba: In 2025 Cuba is executing a program aimed at installing more than 50 solar parks that generate about 1,000 MW or more, and adding battery storage to stabilize the grid.

Jamaica: Established itself as the first country to issue a catastrophic sovereign climate bond (US\$185 million) to protect against extreme events, incorporating financial resilience into the energy system. In addition, the net-billing and tariff suspension programfor efficiency equipment helps decentralize generation and improve the response to adverse weather events.

Dominican Republic: Projects such as solar-plus-storage (Dominicana Azul) with batteries contribute to stability in the face of generation variability.

h) Ensure universal and equitable access to affordable, clean, and modern energy: This involves incorporating specific provisions to achieve equitable access for the entire population, regardless of their geographical location, socioeconomic status, or social condition, to clean, reliable, affordable, sufficient, safe, and sustainable energy sources.

For this, it is essential to establish guidelines aimed at recognizing and correcting existing inequalities in the distribution and cost of energy, prioritizing public investment in energy infrastructure for isolated and vulnerable areas, with a focus on social justice in the process of the transition to renewable energies. At this point, it is also considered essential that the policy provides for mechanisms for the inclusive participation of citizens in decision-making and encourages the implementation of decentralized and community energy models focused on achieving a just energy transition that leaves no one behind.

Belize: Its energy policy explicitly defines universal access to affordable and sustainable electricity as a priority.

Grenada: Its energy policy establishes the objective of ensuring equitable, affordable and reliable access to energy, integrating renewables (solar, wind, geothermal) and energy efficiency.

Haiti: The government has rolled out plans such as "Renewable Energy for All" and "Modern Energy Services for All", financed by the World Bank (US 35 million), to expand access to clean and reliable energy by 2024.

i) Promotion of innovation and technological development: This requires the inclusion of provisions that, in line with the goals of transitioning to renewable sources, sustainability, and energy efficiency, promote investment in research and development for the adoption of emerging clean or less polluting technologies. To this end, it is essential to promote public-private collaboration, establish fiscal and financial incentives for the development of sustainable energy solutions, and promote flexible regulatory frameworks that enable experimentation and implementation of new energy technologies. It is also essential to promote the training of specialized local technicians and professionals and design mechanisms for the transfer of knowledge between universities, research centers and the productive sector.

Barbados: Its energy policy aims to achieve a 100% renewable and carbon neutral system by 2030, with strong support for innovation in renewable energy, distributed storage (solar, wind, biofuels), electric mobility and energy efficiency. The aim is to create a regional centre of excellence in energy R&D.

Belize: The 2012-2033 National Sustainable Energy Strategy includes targets to triple energy recovery from waste and develop a second-generation biofuel pilot program, incorporating innovation in biomass processing.

Cuba: The National Strategy for the Energy Transition in its Pillar 7 called Energy Transition based on science and innovation, projects a transformation of the energy sector based on science and innovation, based on accelerating and perfecting technological processes and the assimilation of technologies, and proposes strengthening the capacities, integration and infrastructure of science and innovation in the ecosystem of Cuban institutions, as well as enhancing the computerization and automation of systems and processes related to the Energy Transition.

Grenada: UNDP's "Smart Grenada" project promotes a hub of digital innovation, digital training and local solutions aimed at sustainability and the blue economy. Innovative uses of sargassum as biogas, fertilizers and bioproducts are explored as part of a circular bioenergy strategy.

Jamaica: Nuclear technologies such as the SLOWPOKE-2 reactor are explored and memoranda of understanding are signed to examinesmallmodular reactors (SMRs), with a viewto long-term energy innovation.

j) Citizen participation and transparency: Involves the establishment of mechanisms for citizen participation and transparency in the design and implementation of the policy, which promote the co-responsibility of the actors and provide legitimacy to the process, for which the inclusion of provisions that guarantee public access to information related to the planning, execution and evaluation of energy projects is required. This implies the design and application of mechanisms for dialogue and consultation with communities, social organizations and other actors linked to the energy chain, from the initial phases of policy formulation to its implementation. The consolidation of open and accessible platforms for the publication of technical, financial and environmental data should also be considered, as well as the creation of other effective channels to send and receive information and respond to comments and suggestions from the population.

Cuba: The National Strategy for the Energy Transition expressly contemplates the participation of the entire society in the lines of action planned to achieve a rapid transition.

Grenada: The national energy policy strategy was submitted to public consultation, in March 2023 a period was opened for citizen comments on the draft of the new policy project, with a process organized by a Sustainable Development Council and technical assistance from the World Bank. In addition, within the framework of the energy policy, the creation of a National Energy Commission was established with the participation of all stakeholders, in charge of reviewing progress, receiving comments and providing feedback to the government.

Jamaica: As part of its National OpenGovernment Plan2024-2026, Jamaica integratesprinciples of citizen participation, access to information and accountability on energy and environmental issues.

k) Encouraging investment: An energy policy geared towards the energy transition must contain effective provisions to encourage investment in modern and sustainable clean technologies. To this end, the policy requires promoting the design and application of stable regulatory frameworks that determine economic, financial and fiscal incentives, green financing schemes and mechanisms for the generation of an environment that generates trust and reduces risks for investors and facilitates the formation of public-private partnerships.

Barbados: For the implementation of the Barbados Energy Transition and Investment Plan, a total investment of 19 billion Barbados dollars (BBD) is estimated until 2040.

Belize: Belize Electricity Limited (BEL) proposed a \$500 million investment plan to integrate 60 MW of solar and 40 MW of batteries during 2024–2028. It also makes improvements to infrastructure and storage in collaboration with the World Bank. The Development Finance Corporation (DFC) offers lines of credit for renewable energy and efficiency projects, promoting local financing for clean energy.

Cuba: The National Strategy for the Energy Transition contains guidelines aimed at strengthening the financial mechanisms and instruments, including the incentive system; and creating those required in order to guarantee the financial support of the Energy Transition in Cuba and the fulfillment of the objectives in the foreseen terms, ensuring

accessibility to resources for all sectors of society. The development of a credit policy including all economic actors, sources of repayment and guarantee fund is also foreseen.

I) Promoting energy integration: An energy policy aimed at promoting integration as a fundamental element of the energy transition must include mechanisms for bilateral, subregional, regional, and international cooperation that facilitate the exchange of resources, technologies, and knowledge between countries and actors in the sector; and promote the interconnection of networks, the development of the energy infrastructure required for interconnection, complementarity, cooperation, and sustainable integration, and the harmonization of regulatory frameworks that promote investment in clean or low-emission energy. Additionally, it must include strategies aimed at guaranteeing a just and inclusive transition, from the social and environmental sphere.

Considering that the approval of a coordinated policy is a fundamental requirement to achieve higher levels of integration, after a decade of preparation, in 2013 the Caribbean established itself as a cutting-edge subregion by approving a subregional energy policy with a specific focus on its structural vulnerability and the need for cooperation to improve its energy resilience. It is important to note that not all sub-regions of Latin America currently have a sub-regional energy policy instrument.

The CARICOM Energy Policy, based on its vision and objectives, is clearly a policy aimed at transition, as it seeks to transform the energy systems of member countries to ensure secure, sustainable, modern, clean, and affordable supplies, promoting a competitive energy environment at the regional level.

Its strategic lines include: Energy security, Energy diversification, Promotion of the use of renewable sources such as solar, wind, hydroelectric, geothermal, and bioenergy, along with natural gas, reducing dependence on imported fossil fuels, Energy efficiency, promoting savings in all sectors through regulations, energy audits, tax incentives, and labeling of efficient equipment; clean, sustainable, and efficient transportation; legal framework and investment (reform of national policies, laws, and regulations to attract investment for the incorporation of clean energy and energy efficiency); energy access and equity; Elimination of energy poverty with universal access to clean, reliable, and affordable energy, Environmental protection and climate change, Reduction of environmental impacts, establishment of regional GHG emission reduction targets, and promotion of sustainable practices, Institutional and educational strengthening (technical training, public education, research, and innovation in the energy sector), Regional interconnection (promotion of cross-border electricity trade and shared infrastructure between countries), Resilience and crisis management (establishment of strategies to deal with energy crises, oil spills, and emergencies affecting energy services), Regional integration in energy services, and development of opportunities for trade in energy services, consulting, and innovation in the regional and international market.

The CARICOM Energy Policy establishes the following sub-regional goals of progressive scope:

- Incorporation of renewables in electricity generation: 20% in 2017, 28% in 2022 and 47% in 2027.
- Energy intensity reduction: 33% by 2027.
- Reduction of CO₂ emissions in the electricity sector: 18% in 2017, 32% in 2022, 36% in 2027.

The CARICOM Centre for Renewable Energy and Energy Efficiency (CCREEE) provides ongoing support to the achievement of these goals across the subregion.

In order to ensure the implementation and institutional support of the policy, a technical support service (Energy Policy and Regulation Help Desk) was created in July 2020, which supports CARICOM member countries in legislative and regulatory reforms, as well as mechanisms to attract investments in sustainable energy.

CARICOM encourages among its Member States the harmonization of national energy regulations, the implementation of regional standards, energy labelling and structuring of interconnected networks.

Initiatives such as the CARICOM Renewable Energy Programme (CREDP) and collaborations with GIZ provide concrete support for renewable projects and energy efficiency in countries such as Guyana, Jamaica and others

CARICOM's Energy Policy, adopted in 2013, seeks to transform the regional energy landscape through a comprehensive approach to security, efficiency, sustainability and equity. The ambitious goals and coordination under C- SERMS and CCREEE are aimed at positioning the region with a diversified, resilient and low environmental impact energy mix.

The CARICOM regional energy policy has a well-structured solid design and presents progress in the implementation of its initial phase, with concrete progress, but still with meagre results to achieve the planned objectives.

Subregional progress

Achievement of targets: In 2022, CARICOM countries reached 12% of electricity generated by renewables, leaving approximately halfway to reaching the target of 28% planned for that year.

Approximately 700 MW of renewable capacity has been installed and each Member State already has an energy policy in place or is in the process of developing one.

Alignment of national policies: There is a high degree of alienation of national policies in relation to the objectives envisaged in the subregional policy.

Institutional and technical support: CCREEE actively assists in the formulation of policies, regulations, national action plans, energy labelling standards (appliances, buildings, lighting) and regional certification frameworks.

Regulation and coordination: In 2023, a regional workshop was held under the ASERT- 2030 framework, promoted by CBD and OOCUR, to strengthen regulatory frameworks and accelerate investments in renewables/resilience.

Subsectoral policies: In the same year, a sub-regional Strategy for Electric Vehicles (REVS) was approved, developed with the collaboration of GIZ within the framework of the TAPSEC Program, aimed at promoting cleaner, more efficient, affordable and safer mobility through the transition to electric vehicles in the Caribbean community.

In April 2025, the Caribbean Electric Mobility Forum was held in Antigua and Barbuda, under the co-organization of UNEP and GIZ, an event in which the participating governments addressed the options to face the challenges related to infrastructure, financing and integration of the energy sector.

Barbados, Jamaica and Grenada have promoted concrete policies in line with the objectives set out in this strategy. To this end Jamaica reduced import tariffs on electric motorcycles; Barbados reached 89% of its public fleet with electric buses and Grenada approved the total exemption of tariffs for the import of electric vehicles and charging stations, in order to ensure that all new cars in 2025 are electric or hybrid.

Main challenges

The achievement of the target by 2022 (12%) is well below what was expected (28%), so it is necessary to take measures for a gradual compensation of this gap.

There is some slowdown in access to modern technologies and effective actions to ensure sufficient funding. It is necessary to accelerate this process by applying planning tools, attracting investment and managing external cooperation.

Progress to highlight by country

Trinidad and Tobago explicitly incorporated into its domestic legislation the commitments undertaken under the ratification of the Paris Agreement. Additionally, its first Biennial Update Report (BUR) of 2021 included a goal to avoid 103 Mt CO_2e , which has legal support through the establishment of tax incentives for CNG transport and renewable energy initiatives aimed at complying with the NDCs

Dominican Republic: Through the support of the UNFCCC Regional Climate Change Centre, is working on the development of a roadmap for the implementation of an Emissions Trading System (ETS) as part of its NDC.

Barbados: In 2020, within the framework of the Climate Commitment Summit, it announced a goal of net zero emissions by 2030, with legal support and linked to its NDC commitments.

Barbados and **the Dominican Republic** are aligned with their NDCs through public policies, sector strategies and the development of regulatory frameworks.

5.1.2 Regulatory Framework

a) Interconnection and access to the grid: a regulatory framework that guarantees the integration of renewable energies into the electricity system must contain clear and consistent technical regulations that determine the requirements for connection, operation and safety of these sources to the transmission and distribution system. Regulations must establish uniform technical standards, simplified procedures and defined deadlines for the evaluation and approval of interconnections, in order to provide efficiency and transparency. Likewise, the legal, regulatory, and normative framework must ensure open and non-discriminatory access to the network through rules that restrict exclusionary practices by network operators and promote fair competition among generators. It must establish clear rules that require network operators, both public and private, to allow equitable access by third parties, including new actors such as distributed producers, energy communities and innovative companies. It is also essential to institute coordination mechanisms between regulatory authorities, system operators and developers to ensure a continuous updating of standards in line with the advancement of technology and changes in electricity market conditions.

Grenada: The Planning Regulation for Generation Expansion and Competitive Acquisition establishes procedures for the expansion of electricity generation capacity, prioritizing renewable energy and energy efficiency projects. In addition, the Standard

Net Metering Connection Agreement facilitates the connection of small-scale renewable energy systems to the electricity grid, allowing users to generate and sell surplus energy.

Jamaica: The Electricity Regulations (Net Billing) 2022 allow users with renewable generators (solar, wind) to sell surpluses to the system, promoting distributed generation.

Dominican Republic: The Net Measurement Regulation (2011, CNE Resolution No. AD-0007-2011), implements a net electricity metering system for small renewable generators connected to the distribution network. This regulation allows users with solar panels or other renewable sources to inject surplus energy into the grid and receive credits on their bill.

b) Incentives: A regulatory framework for energy transition must establish effective incentives for the introduction of renewable energy sources, such as feed-in tariffs (FiT), which guarantee fixed rates, generally at a higher price than the market price, to green energy producers who feed electricity into the grid, renewable energy auctions, tax credits, tariff exemptions or green certificates, guarantees of origin and traceability through certificates that ensure the renewable origin of the energy, reliable monitoring and verification systems, and other mechanisms aimed at encouraging investment in clean technologies. In this regard, it is important to note that the legal concept of a declaration of public interest approved by decree or resolution constitutes an incentive to promote the development of a specific renewable energy source or project, as it has proven to be a functional legal and administrative instrument that facilitates the introduction of new sources, technologies, and the implementation of projects and programs related to the energy transition. With this declaration, the source or project acquires administrative and operational priority and becomes a direct beneficiary of certain regulatory or tax privileges, as well as facilities for obtaining permits or licenses.

Barbados: The Electricity Law (ELPA) 2013, together with its amendments of 2015 and 2019, regulates independent producers (IPP), determines on the licenses for generation, transmission and storage. It establishes the requirement of at least 30% national participation in renewable projects. In September 2024, the Electricity Supply Act was passed, introducing a new modern regulatory framework for the generation, storage, transmission, distribution, dispatch, supply, and sale of electricity, with the aim of promoting efficiency, sustainability, and the integration of renewable energies. It contains regulations on the establishment of microgrids, both connected to the public network and independent or "islanded"; and also allows entities other than BEL & P (including BEL & P itself) to operate microgrids. This law encourages local participation and domestic investment, democratizing the energy sector by allowing local investors and companies to take advantage of the energy market in a competitive framework, which promotes competition, innovation and access for independent producers.

Belize: The regulatory framework for electricity generation includes incentives such as preferential tariffs for renewable energy projects, tax exemptions for the import of equipment and clean technology, and facilities for power purchase agreements (PPAs) with the national supplier Belize Electricity Limited (BEL).

Cuba: Decree 110 in force since November 2024, complementsDecree-Law345 focusing on the controland efficient use of energy carriers and renewable sourcesboth under normal conditions and duringelectricalcontingencies, and imposes obligations and sanctions on "high consumers" (≥ 30 MWh/month) so that at least 50% of their consumption at peak hours comes from renewables, in additionithas contingent

protocols in case of blackouts greater than 72 hours. On the other hand, Resolution 238/2023 (MFP) updates tariffs for the purchase of electricity from renewable sources and Decree No. 236 of 2021 approves the Technical Regulations of the Ministry of Energy and Mines for end-use and generation equipment with renewable sources, which establishes criteria of quality, efficiency and electrical safety, including tropicalization for equipment used in the country. In addition, Resolution 206 of 2021 (MINEM) regulates the authorization to import photovoltaic systems by natural persons and Resolution 208 of 2021 (MINEM) allows the import of renewable generating technologies without quantitative limits. Likewise, Resolution 319 of 2021 of the Ministry of Finance and Prices and Resolution 322 of 2021, both of the Ministry of Finance and Prices, determine tariff exemptions for natural persons for the import of photovoltaic systems and their parts. Also, Decree-LawNo.345 of 2019, establishes the regime for the development of renewable sources and energy efficiency and determines fiscal and tariff incentives for the participation of foreign investors, manufacturers, residential consumers, five-year programs and support for research.

Grenada: The Electricity Supply Act No. 19 of 2016, establishes the framework for the generation, transmission and distribution of electricity, promoting the adoption of renewable energies and energy efficiency. On the other hand, the Hydrocarbons Exploration Incentives Act No. 10 of 2017, to promote the adoption of clean technologies in the context of hydrocarbon exploration, establishes tax and tariff exemptions for the importation of energy-efficient technologies and renewable energy equipment.

Guyana: The Electricity Sector Reform Act of 1999, amended in 2010, incentivizes modernization of regulations and private sector participation. In addition, the so-called Grid Codes determine technical standards for the integration of renewable generation into the electricity grid, and enable grid infrastructure for solar energy and biomass. In addition, Guyana has tax incentives for the incorporation of renewables into the energy matrix through tariff and VAT exemptions for equipment for renewables, a 2-year reduction in the corporate tax on clean technology importers, facilities for individuals and companies to connect photovoltaic systems to the main grid, among others.

Haiti: The Finance Law in force since 2017 establishes import duty exemptions for a wide range of renewable energy equipment, including photovoltaic modules (solar panels), inverters (photovoltaic converters), solar batteries, solar generators, solar LED lamps, solar pumps, and solar water heaters. The Chain of incentives established by initiatives such as Climatescope: contemplate bids forrenewables,feed-in tariffs,netmetering, VAT exemption and renewableenergytargets. The stimulus chain promoted by Climatescope is being shaped by a combination of ANARSE regulations, sectoral projects such as PHARES, and policy frameworks established in the Energy Roadmap.

Jamaica: The Electricity Act passed in 2015 and its associated regulations facilitate the conduct of renewable auctions and pave the way for the progressive replacement of fossil plants by clean sources. The granting of tax credits for large-scale renewable projects (25-30%), the suspension/reduced tariffson imports of panels, inverters, batteries, windand the deductionsfor net billing and Energy Efficiency equipment are also regulated.

Dominican Republic: Law 57-07 on the Incentive to Renewable Energies and Special Regimes establishes a legal framework that encourages investment and the development of clean and sustainable sources. It encourages the incorporation of renewable energies into the national energy matrix through tax benefits such as tax

exemptions, reduced tariffs for the import of equipment and guarantees for the purchase of generated energy, andgrants concrete benefits such asexemption from importtariffs,tax credits (up to 40% for self-generators), and reductionof withholdings to finance renewableenergyequipment, such aswind and solar.

Suriname: The Electricity Act of 2016 introduces public auction mechanisms for renewable energy projects (solar and wind), guaranteeing contracts with purchase rates (PPAs), and regulates net metering by allowing private consumers to install solar panels and dump surpluses into the grid, receiving the corresponding compensation. In December 2024, a ministerial decree extended the 90% customs exemption not only to solar panels, but to the entire system (including batteries), reducing the cost of domestic or commercial installation.

Trinidad and Tobago: Finance Act No. 13 of 2010, in force since 2011, establishes tariff exemptions for solar thermal and solar photovoltaic machinery, 0% VAT on solar panels and wind turbines, 25% tax credit (up to TT\$2,500) on domestic solar water heating equipment, accelerated amortization and deductions for ESCOs and companies that implement energy efficiency.

c) Storage and backup: The regulatory framework for the energy transition must reflect the fundamental role played by Energy Storage Systems (ESS) in facilitating greater incorporation of variable renewable energies into the electricity system, promoting stability in the electricity grid by responding to fluctuations in supply and demand, providing backup in the event of power outages and interruptions, and contributing to the decentralization of production and bringing consumption and generation centers closer together, among other functions that position them as the main source of flexibility for electricity systems in a scenario that promotes net zero emissions. Likewise, while the regulations required for the introduction and effective implementation of ESS are being structured, transitional provisions should be established to provide stability to the system and help counteract the impact of the lack of storage capacity on electricity discharges, the corresponding loss of potentially useful energy, and its impact on the fall in injection prices and, therefore, on market volatility.

Barbados: The regulator requires that new projects of more than 100 MW connected to the grid include energy storage or accept selective outages, to maintain the stability of the system. In the framework of the Decision on the regulatory framework and tariffs for energy storage of June 2023, the Fair Trade Commission approved tariffs for pilot energy storage of 50 MW, charging for both capacity and service. In addition, in May 2023, the Clean Energy Transition Rider (CETR) approved a mechanism for the public company BL&P to recover investments in batteries through a regulated surcharge.

Dominican Republic: Through Resolution CNE - AD -0004- 2023 it was determined that new projects of variable renewable sources(solar, wind) integrate storage systems as part of their operations, subsequently Resolution CNE - AD -0005- 2024 updated the previous one requiring projects of \geq 20 MW, batteries with a capacity of at least 50% and aminimum duration of 4 hours, and for projects of \geq 200 MW an additional technical evaluation is required. These provisions are also aimed at protecting the system from excessive concentration atinjection sites.

d) Simplification of Permitting: A regulatory framework conducive to energy transition should be geared toward simplifying, streamlining, and increasing the transparency of the procedures required to grant licenses and authorizations for the implementation of

energy projects. To this end, it is essential to have provisions that guarantee the agility and harmonization of administrative processes, by discarding redundant procedures and promoting the approval of a one-stop system for permit management. This implies the establishment of clear and peremptory deadlines for the evaluation and approval of projects, uniform technical criteria, and inter-institutional coordination mechanisms that avoid duplication of actions between regulatory bodies. Incentives are also effective through differentiated procedures according to the scales and environmental impacts of the projects and initiatives.

Jamaica: The Electricity (Electrical Works, Registration and Licensing) Regulations, 2020, establish standards for registration and licensing of electrical works and projects, essential to ensure safe and reliable renewable systems.

Dominican Republic: Decree 65-23 of 2023 replaces the previous regulation by instituting a competitive bidding system for renewable energy projects, reinforcing transparency and reducing discretion.

e) Capital attraction: To structure a regulatory framework that facilitates the attraction of national and foreign capital for the financing of the energy transition, it is essential to ensure clarity, legal stability and predictability in the applicable rules, that is, the rule of law. This framework should contain specific fiscal and financial incentives to promote the implementation of clean energy projects, establish mechanisms for public-private participation, and simplify permitting and licensing processes. Likewise, it must be aligned with international sustainability and transparency standards, contemplate environmental and social safeguards, and facilitate non-discriminatory access to the electricity grid. A well-defined regulation, based on a solid institutional framework and supported by a coherent energy policy, generates confidence in investors and decreases the perception of perceived risks, thus facilitating a greater mobilization of resources towards the planned objectives and goals set in each energy transition path.

Dominican Republic: Decree No. 608-21, which amends several articles of Regulation No. 202-08 for the application of Law No. 57-07 on Incentive to the Development of Renewable Energy Sources, strengthens and streamlines mechanisms for access to fiscal and administrative incentives for renewable energy projects, promoting greater private investment and facilitating the sustainable development of the sector. This legal instrument in force since 2021, updates procedures, clarifies benefits and establishes more attractive conditions to promote clean technologies.

f) Promotion of progressive decarbonization of the energy sector: The regulatory framework must provide the necessary regulations to achieve the decarbonization targets set out in the policy, by establishing incentives that favor the transition to clean or less polluting energies, such as preferential tariffs, green subsidies, and market mechanisms such as emissions trading. It should also set technical standards for energy efficiency, require transparency and traceability in emissions information, and promote the participation of the private sector and encourage technological innovation. Likewise, the determination of periodic review and regulatory adaptation schemes is essential to adjust to technological and socio-economic advances.

Belize: The Environmental Protection Act (1992, amendments of 2009), regulates environmental impact assessment, polluting activities licenses, waste management, ecosystem protection and other emission reduction provisions that energy projects must also comply with.

Grenada: The Physical Planning and Development Act No. 23 of 2016 regulates land use and environmental impact assessments, promoting the construction of sustainable buildings and the integration of clean energy.

Guyana: The Environmental Protection Act of 1996 establishes environmental control and impact mechanisms, considered key in renewable energy and gas projects.

Dominican Republic: The General Law of Environment and Natural Resources No. 64-00 promotes the sustainable use of energy resources and the reduction of polluting emissions, in line with international commitments on climate change. Additionally, Decree No. 158-23 (2023), which approves the Energy Saving and Efficiency Policy in the Public Sector, declares the implementation of energy saving and efficient use policies in all State institutions to be a high national priority, ordering all Public Administration agencies to adopt concrete energy efficiency measures in their operations. In addition, it establishes categories of state consumers (small and large) and provides for the figure of the "Energy Manager" in each public entity to supervise compliance with these measures. In addition, the Electricity Pact signed in 2021 includes specific goals to diversify the energy matrix, progressively decreasing the share of fossil fuels and increasing investment in clean energy.

Suriname: In 2024, a Framework Law on the Environment was approved, with specific sections that regulate funds, budgets and reports for climate financing. The issuance of sovereign carbon credits (ITMOs) based on forest management and emission reduction, which local companies could require to offset emissions, has also begun.

g) Promotion of technological development and innovation: The regulatory framework should define and implement clear, stable, and predictable rules that encourage investment in clean technologies and promote innovation and technological development, incorporating incentives (subsidies, tax exemptions, tariff reductions, green bonds, preferential financing, tax credits, deductions, etc.) for research, implementation, and development of sustainable energy solutions, and mechanisms that enable and encourage the integration of new low-emission technologies into the energy sector, such as smart grids, energy storage systems, energy efficiency, and distributed generation. Likewise, laws must guarantee fair competition in the energy market, eliminate legislative and procedural barriers and support startups and research centers.

Jamaica: For the implementation of the Strategic Framework for Electric Mobility, taxes on electric vehicles were reduced (from 30% to 10%).

Dominican Republic: Law No. 103-13 on incentives for the importation of non-conventional energy vehicles in the Dominican Republic represents a key pillar in the drive towards energy transition, by promoting technological development and innovation in the transport sector. By eliminating or reducing tax barriers to the introduction of electric, hybrid, and other clean-energy vehicles, the law encourages the adoption of sustainable technologies that not only reduce dependence on fossil fuels but also open up opportunities for research, development, and investment in related infrastructure, such as charging stations, energy management software, and smart mobility solutions. This legal framework encourages both the private sector and academia to innovate, adapt and actively contribute to a more efficient, modern and environmentally friendly transport ecosystem.

h) Recognition of energy as a human right: This implies the express recognition in the Constitution of the right to energy as a human right conceived as a legal right that

protects the action or claim to demand universal, affordable, safe, sufficient, continuous, and sustainable access to modern energy services and products as a sine qua non requirement for guaranteeing the effective exercise of other fundamental rights, such as the right to a dignified life with adequate standards of nutrition, health, education, work, and other fundamental rights that contribute to achieving high levels of human development and depend largely on energy to be realized.

None of the Political Constitutions of the OLADE Member States considered in the Caribbean subregion explicitly contain the right to energy as a human right. However, some recognize related rights related to the State's duty to ensure that public services (electricity, gas, etc.) are provided with quality, continuity and equality.

Looking at how energy is usually treated in the constitutional framework, two scenarios can be identified that involve two different perspectives. On the one hand, the States that deal with the issue by establishing precepts related to energy sources and on the other hand those who address the issue by dealing with energy itself. In Latin America and specifically in the Caribbean there is a greater tendency to manage this area by establishing constitutional provisions for the energy sources that are usually called natural resources.

In this way they focus on the issue of energy in their constitutions: Barbados, Belize, Cuba, Grenada, Guyana, Jamaica, and Trinidad & Tobago.

Among the nations that use the term energy expressly in their constitution are: Haiti, the Dominican Republic and Suriname.

Haiti: Article 255 of Chapter II of the Constitution (in force since 1987, last reform 2011) dedicated to the environment, establishes that "the State promotes the development of forms of clean energy such as solar, wind, among others."

Dominican Republic: In Article 67 of the Constitution (promulgated in 2010 and last amended in 2015), relating to the protection of the environment, it is determined that: "The State shall promote, in the public and private sectors, the use of non-polluting alternative technologies and energies."

Suriname: In Article 24 of Chapter VI of the Constitution (in force since 1987, last reform 1992), dedicated to establishing social, cultural and economic rights and obligations, it is determined that "The State is concerned with creating conditions such that the basic needs of work, food, health care, education, energy, clothing and communication are optimally met."

i) Establishment of consumer protection mechanisms: A regulatory framework aimed at the energy transition must include binding regulations that guarantee the protection of consumers, seeking to avoid violations of their rights in a context of technological and tariff transformation and the incorporation of new energy sources. It also promotes energy equity, with fair tariffs and standards aimed at achieving universal and continuous access to clean energy, and promotes energy literacy so that consumers can make coherent and informed decisions in alignment with the objectives and goals assumed in the framework of the transition. Likewise, it must ensure transparency in the information related to the costs, benefits and risks associated with new energy technologies, and determine effective mechanisms to address complaints, guarantee citizen participation in decision-making and ensure the protection of the most vulnerable sectors against potential tariff increases or unjustified disconnections. The regulatory

framework must be focused on issuing rules that prevent the transition from unfairly increasing access to energy.

Belize: The Electricity Act, through legal instrument No. 60 of 2001, gives the Public Services Commission the role of electricity regulator in terms of setting tariffs, monitoring continuity and quality of supply, user protection and conflict resolution in the sector.

Grenada: The Public Utilities Regulatory Commission Act No. 20 of 2016, creates the Public Utilities Regulatory Commission (PURC), in charge of regulating tariffs, supervising the quality of service and promoting the adoption of renewable energies.

Guyana: The Public Utilities Commission Act regulates tariffs, service standards and conflicts that are generated within the framework of the provision of public services, including electricity and gas.

j) Guarantees for energy security: It must incorporate clear and coherent rules that promote the diversification of the energy matrix by promoting renewable sources, and reduce dependence on imported fuels, while guaranteeing security of supply, by establishing standards of reliability and resilience in the electricity system. It is also essential that it incorporates technical and environmental requirements for the development of new infrastructure, promotes energy efficiency, and encourages the participation of the private sector and citizens in decision-making. In addition, it must guarantee legal and regulatory stability to attract investments, and provide for resilience measures against climate and geopolitical risks.

Barbados: The 2024 electricity supply law, in terms of resilience and infrastructure modernization, determines that in the face of the forecast of serious climatic events, transmission and distribution lines are buried to increase the resistance of the system. Includes the requirement of official notification to the Ministry of Energy in case of major system failures. On the other hand, the Inefficient Lighting Control Law 2021-13 promotes energyefficiency by regulatinginefficient lighting.

Belize: The country has an Energy Efficiency Financing Facility, funded by GEF and DFC, to support modernization and use of efficient technologies in residential, commercial and institutional sectors.

Guyana: The GYS 577, 578, 503 energy standards regulate labelling and efficiency for LED lighting, air conditioning and energy management systems.

Jamaica: With the issuance of the "catastrophe bond" for US \$185m in 2021, the climate resilience of energy infrastructures is boosted. It is an innovative financial instrument designed to protect the country against natural disasters, especially hurricanes and earthquakes. It was approved in August 2021 with the support of the World Bank, and represented a pioneering measure in the Caribbean. It is an investor-funded type of insurance, Jamaica issues the bond it is bought by investors, and if a natural disaster occurs, Jamaica receives immediate financial compensation to deal with the emergency, and if the disaster does not occur during the term of the bond, investors receive their money back with interest. The insured amount was USD 185 million and the duration was 3 years (2021–2024). It was structured with the support of the World Bank and placed in international capital markets. It is the first of its kind in the Caribbean: It is the first catastrophic sovereign bond in the Caribbean region financed by the capital market. The first of 185M expired in 2023 and another of 150M was issued that will be in force until 2027. On the other hand, Jamaica has a regulation that prohibits incandescent bulbs

implemented by decree since April 2023, supported by efficiency campaigns and reduction of electrical losses.

k) Promotion of energy integration: Energy Transition Law aims to promote the progressive decarbonization of the energy sector as an essential measure to reduce greenhouse gas emissions generated by activities in the energy chain, thereby helping to limit global warming and counteract the adverse impacts of climate change. To face these global challenges, solutions must inevitably be coordinated and therefore integration plays a fundamental role in achieving progress in this regard.

Another fundamental element can be seen in the strength that international doctrine begins to acquire as a source of law in national systems while maintaining its *soft law*status. The most obvious example is the Paris Agreement, which, even though it is a legally binding global commitment under public international law for the countries that ratified it, still contains elements of *soft law*, as each country voluntarily sets its own emission reduction targets and decides in which sectors to do so, and there are no penalties for non-compliance. However, the commitments made are already regulated in the national legislation of the parties, thus becoming *hard law*. Other examples are instruments generated by international intergovernmental bodies such as the UN (Conference of the Parties), OLADE (ministerial decisions and joint declarations), the IEA and IRENA (recommendations), and the International Atomic Energy Agency (provisions), which contain provisions, goals, declarations and recommendations that, depending on the level of commitment generated around them, in some way impact and nourish the domestic law of States with regard to the political and regulatory framework for energy.

I) Greater convergence between Energy Law and Mining Law: To achieve an effective energy transition, it is essential to achieve greater convergence between Energy Law and Mining Law, taking into account that these two sectors are deeply linked in the context of the intensification of the incorporation of clean energy sources into the energy matrix, since the development of renewable technologies such as solar panels, wind turbines, and the corresponding storage systems such as batteries depend to a large extent on critical minerals such as lithium, copper, cobalt, and rare earths. In this sense, a coherent legal link between the regulatory provisions that regulate the exploitation of these resources and those that promote the generation and distribution of sustainable energy is essential to guarantee the safe, responsible and environmentally sustainable provision of the inputs required for the transition. This correlation favors the harmonization of environmental, social and economic objectives, avoiding regulatory contradictions and enabling long-term integrated strategic planning.

Dominican Republic: In August 2024, Decree 453-24was issued establishing Empresa Minera Dominicana, S.A. (Emidom), as a state entity dedicated to the exploration and exploitation of strategic mineral resources, including rare earths and a possible lithium deposit. Also in August 2024, the Dominican Republic joined the Mineral Security Partnership (MSP, for its acronym in Spanish) Forum, an international platform focused on promoting responsible supply chains for critical minerals.

6. CONCLUSIONS

Taking stock of the parameters analyzed, it can be concluded that the countries of the Caribbean subregion have made significant progress in their respective national energy transition processes.

With regard to climate commitments, it is important to note that all OLADE Member States located in the Caribbean subregion have ratified the Paris Agreement and submitted Nationally Determined Contributions (NDCs), which has served as an impetus for the development of public policies and regulatory frameworks aimed at decarbonization and the incorporation of renewable energies into the energy matrix.

All the countries analyzed in this study have instruments that establish energy policy guidelines in force and with guidance towards the achievement of progress and fulfillment of established objectives and goals set within the framework of the energy transition.

The Caribbean subregion is endowed with a significant potential of renewable energy sources with abundant solar, wind, geothermal and marine resources, which generates great opportunities for the diversification of the energy matrix, reducing dependence on imported fossil fuels and improving energy security.

In the 10 years since the Paris Agreement was signed, all the countries in the Caribbean subregion have made regulatory progress toward decarbonizing the energy sector by adopting regulatory frameworks aimed at introducing renewable energy sources into their energy mixes and increasing energy efficiency. and a significant number of them have excelled in the design and implementation of regulations and standards related to emerging issues in the context of the energy transition.

The Caribbean subregion is a regular beneficiary of collaboration, technical assistance, and international support from major multilateral institutions (CAF, IDB, World Bank) and cooperation agencies (EU, UNDP) that channel technical and financial resources to support the design and refinement of policy and regulatory frameworks aimed at sustainable energy development.

The Caribbean is the only subregion in Latin America and the Caribbean that has a proper subregional energy policy such as the Caribbean Energy Policy (CEP) developed within the framework of CARICOM as part of its efforts to promote a more secure, sustainable and accessible energy system in the subregion, and approved by the Heads of State and Government in 2013. Its scope extends to the diversification of energy sources (with an emphasis on renewable energies), energy efficiency, regional interconnection of energy infrastructures, and the reduction of dependence on imported fossil fuels.

This sub-regional policy has also been complemented with the approval and implementation of specific plans, institutionalised initiatives and sub-regional cooperation frameworks such as:

The CARICOM Sustainable Energy Action Plan (C-SERMS), which sets concrete short, medium- and long-term goals functioning as a common roadmap for the subregion focused on transforming the Caribbean energy sector towards a more sustainable, efficient and resilient model.

The Caribbean Sustainable Energy Program (CSEP), technical and implementation guide that complements the CEP. Developed in collaboration with organizations such as: CARICOM, CARILEC, OAS, IRENA.

SIDS DOCK: an energy cooperation and climate change platform designed to support Small Island Developing States in their energy transition processes, created in 2009 under the framework of the Alliance of Small Island Developing States (AOSIS), with the main objective of helping them access financial and technological resources to promote renewable energy and energy efficiency, reduce dependence on oil, and enable access to international climate finance, such as the Green Climate Fund (GCF). In alignment with the UN and international organizations such as AECID, IRENA and UNIDO, it has a Secretariat that coordinates projects, technical support and liaison with donors, it functions as a "one-stop shop" to channel resources.

Regarding the challenges, to some extent there are still fragmented regulatory frameworks in the process of development, taking into account that some Caribbean countries do not yet have specific regulations aimed at promoting renewable energies, energy storage, smart grids and electric mobility.

Another need for improvement has to do with the weaknesses and limitations of the institutional framework required to guarantee the progress of the transition, a product, among other causes, of the interruptions in the implementation of long-term energy policies, due to the lack of continuity of the guidelines established in the changes of government.

Although there is evidence of progress resulting from the implementation of transition-oriented energy policy and regulatory frameworks, most Caribbean countries continue to rely on fossil fuels (diesel and fuel oil) for electricity generation, for reasons of cost, availability and existing infrastructure.

The lack of financing and investment barriers for the development of transition technologies and infrastructures, as well as for the implementation of renewable source projects represent a great challenge for Caribbean nations due to the small scale of their markets, the risks perceived by investors, and the need to design and implement effective investment frameworks.

It is also essential to continue working on the solution of the geographical barriers that hinder the interconnection and therefore the energy integration of the Caribbean, which implies facing the technical and economic challenges imposed by the island geography for the development of shared or interconnected energy infrastructures.

The Caribbean subregion (primarily the insular Caribbean) has a responsibility to lead the energy transition given its high vulnerability to climate change and great renewable potential.

To this end, it is essential to overcome political, regulatory and financial challenges to ensure the achievement of the goals set in an effective, equitable and sustainable energy sector transformation process.

7. BIBLIOGRAPHY

- López Ibor, Vicente. Conversaciones sobre la energía. Fundación Iberdrola España, 2022.
- Moreno Castillo, Luis Ferney, et al. Formación de un derecho de la transición energética: regulación de soluciones energéticas bajas en emisiones y economía circular. Universidad Externado de Colombia, 1st ed., 2023.
- Mejía-Montero, Adolfo, ed. Energy Justice in Latin America: Reflections, Lessons and Critiques. Routledge, 2025
- Romero Pérez, Xiomara Lorena. "Transición energética en el Caribe insular: ¿Una nueva posibilidad para la integración energética regional?" Desarrollo sostenible e integración, edited by Eric Tremolada Álvarez, Universidad Externado de Colombia, 2022, pp. 405–427.
- Barbados National Energy Policy 2019-2030
- Barbados Energy Transition and Investment Plan (ETIP) 2025
- Belize National Energy Policy 2023-2040
- Estrategia Nacional para la Transición Energética en Cuba-2024
- Grenada National Energy Policy 2025
- Guyana Draft National Energy Policy 2020
- Low Carbon Development Strategy (LCDS) 2030 Guyana
- National Energy Sector Development Plan 2007-2032- Haiti
- National Energy Policy 2009-2030 /Vision 2030 Jamaica
- National Renewable Energy Policy 2009-2030 Jamaica
- National Waste Energy Policy 2010–2030 Jamaica
- Conservation and Energy Efficiency Policy Jamaica
- Biofuels policy Jamaica
- Regulatory Map of the Dominican Electricity Sector Dominican Republic
- National Energy Plan 2013 2033 Suriname
- National Environment Policy Trinidad and Tobago (2006, revised 2018)

- Framework for the development of a renewable energy policy for Trinidad and Tobago
- National Energy Policy: Renewable Energy Policy- 2010 Trinidad and Tobago
- Sustainable Energy Roadmap and Implementation Plan for Trinidad and Tobago 2021-2030
- CARICOM Energy Policy 2013
- CARICOM Sustainable Energy Action Plan (C-SERMS)
- Generation Expansion Planning and Competitive Acquisition Regulations Grenada
- Decreto 453-24 Dominican Republic
- Energy Standards GYS 577, 578, 503 Guyana
- Energy Efficiency Financing Facility Belize
- Power Supply Act 2024 Belize
- Public Utilities Commission Act Guyana
- Grenada: The Public Utilities Regulatory Commission Act No. 20, 2016 Grenada
- Electricity Act legal instrument No. 60 of 2001 Belize
- Law No. 103-13 on incentives for the importation of non-conventional energy vehicles in the Dominican Republic
- Environment Framework Law 2024- Suriname
- Electricity Act 2016 Suriname
- Electricity Pact signed in 2021 Dominican Republic
- General Law of Environment and Natural Resources No. 64-00 Dominican Republic
- Decree No. 158-23 (2023), which approves the Energy Saving and Efficiency Policy in the Public Sector of the Dominican Republic
- General Law of Environment and Natural Resources No. 64-00 Dominican Republic

- Environmental Protection Act 1996 Guyana
- Physical Planning and Development Law No. 23, 2016 Grenada
- Environmental Protection Act (1992, Amendments of 2009) Belize
- Decree No. 608-21 Dominican Republic
- Reglamento No. 202-08 Dominican Republic
- Law No. 57-07 sobre Incentivo al Desarrollo de Fuentes Renovables de Energía
 Dominican Republic
- Decree 65-23 of 2023 Dominican Republic
- Electricity Regulations (Electrical Works, Registration and Licensing), 2020 –
 Jamaica
- Resolution CNE-AD-0004-2023 Dominican Republic
- Resolution CNE-AD-0005-2024 Dominican Republic
- Decision on regulatory framework and tariffs for energy storage June 2023 Barbados
- Finance Law No. 13 of 2010 Trinidad and Tobago
- Electricity Act passed in 2015 Jamaica
- Law 57-07 on Renewable Energy Incentives and Special Regimes Dominican Republic
- Finance Law in force since 2017- Haiti
- Electricity Sector Reform Act 1999, as amended in 2010 Guyana
- Decree 110 in force since November 2024 Cuba
- Decree-Law345 of 2019 Cuba
- Resolution 238/2023 (MFP) Cuba
- Decree No. 236 of 2021 approving the Technical Regulation of the Ministry of Energy and Mines for end-use equipment and generation with renewable sources

 Cuba
- Resolution 206 of 2021 (MINEM) regulating the authorization to import photovoltaic systems by natural persons – Cuba

- Resolution 208 of 2021 (MINEM), which allows the import of renewable generating technologies without quantitative limits - Cuba
- Resolution 319 of 2021 of the Ministry of Finance and Prices Cuba
- Resolution 322 of 2021 of the Ministry of Finance and Prices, determines tariff exemptions for natural persons for the import of photovoltaic systems and their parts – Cuba
- The Electricity Act (ELPA) 2013, Amendments 2015 and 2019 Belize
- Generation Expansion Planning and Competitive Acquisition Regulations Grenada
- Standard Net Metering Connection Agreement, Grenada
- Electricity (Net Billing) Regulations 2022 Jamaica
- Net Measurement Regulation (2011, CNE Resolution No. AD-0007-2011) Dominican Republic
- Political Constitutions in force in: Barbados, Belize, Cuba, Grenada, Guyana, Haiti, Jamaica, Dominican Republic, Suriname, Trinidad and Tobago.

(X) @OLADEORG

Organización Latinoamericana de Energía OLADE

Conexiones Energéticas - OLADE

OLADE - Organización Latinoamericana de Energía