Discussion Topics

- Introduction
- Semi renewable jet fuel: Hydroprocessed renewable jet synthetic paraffinic kerosene (HRJ SPK)
- Fully renewable jet fuel: The Path to 100% Renewable Jet Fuel
Honeywell Corporate Overview

- 125,000 employees in more than 100 countries
- A Fortune 100 company – sales of $34.5 billion in 2008
- Global leader in advanced technology products, services and solutions

Honeywell
Technology Company, Financially Strong and Global
UOP Overview

• Leading supplier and licensor of processing technology, catalysts, adsorbents, process plants, and technical services to the petroleum refining, petrochemical, and gas processing industries for over 90 years

• UOP Technology Furnishes: 60% of the world’s gasoline; 70% of the world’s modern detergents; 60% of the world’s para-xylene

• ~3000 employees worldwide

• ’08 Financials: ~$2 billion sales;

• Strong relationships with leading refining and petrochemical customers worldwide

• 70+ processes in 6,000+ units in hydrocarbon processing industry; 300+ catalysts, adsorbents; 31 of 36 refining technologies in use today created by UOP

Track Record Of Technology Innovation
UOP Renewables Vision

- Building on UOP technology and expertise
- Produce **real** “drop-in” fuels instead of fuel additives/blends
- Leverage existing refining, transportation, energy, biomass handling infrastructure to lower capital costs, minimize value chain disruptions, and reduce investment risk.
- Focus on path toward second generation feedstocks & chemicals

Oxygenated Biofuels
- Ethanol
- Biodiesel

Hydrocarbon Biofuels
- Fuel & Power
 - Diesel
- Jet
- Gasoline

“Other” Oils: Camelina, Jatropha

First Generation
- Natural oils from vegetables and greases

Second Generation
- Lignocellulosic biomass, algal oils
Market Drivers/Enablers

- EU Emission Trading Scheme extending to aviation sector:
 - Aviation emissions: Fastest growing of any sector
 - 2012 Emissions: 97% of 2005
 - 2013 Emissions, 95% of 2005

- US Military’s National Security driven goals to achieve both greater substitution (~50% by 2020) & GHG reduction,

- Aviation industry OEM’s drive to render fleets compatible with upto 50% biojet

- Major Airline initiatives to use biojet

- Accelerated certification efforts

- 2nd gen feedstock initiatives:
 - Camelina, Jatropha, Algal
Forecast of Industry CO₂ Emissions

Key Drivers of Emissions Reductions

- Using Less Fuel
 - Efficient Airplanes
 - Operational Efficiency

- Changing the Fuel
 - Sustainable Biofuels

Low carbon fuels a key part of emissions reduction

Presented to ICAO GIACC/3 February 2009 by Paul Steele on behalf of ACI, CANSO, IATA and ICCAIA
UOP RE&C Technologies & Capabilities

Feed	Process	Product
Natural Oil/Fats | Ecofining™ Process | Green Diesel
Hydrogen | | Green Jet (if req)
Natural Oil/Fats | Renewable Jet Process | Green Jet
Hydrogen | | Green Diesel

Envergent Technologies – UOP/Ensyn JV

Biomass	Rapid Thermal Processing (Pyrolysis)	Green Power / Fuel Oil (now)
	Upgrading Process	Green Fuels (2012)

Sustainable technologies – feedstock flexible & 2nd Gen ready

UOP Proprietary

HVO: ‘000’s barrels/day
Viable Sustainable Biofuel feedstock alternatives: Commercial Scale Production

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Readiness Time Frame</th>
<th>Challenges</th>
</tr>
</thead>
</table>
| Algae | Ready in 8 to 10 years | - Technological innovation needed for processing
 - Algal Oil extraction key hurdle |
| Jatropha | Ready in 2 to 4 years | - Limited to warm climates only
 - Mechanical harvesting isn't mature |
| Halophytes | Ready in 5 to 7 years | - Proven at pilot scale
 - Improve agronomy for cost reduction |
| Camelina | Ready Now | - Limited total potential owing to yield
 - Somewhat tied to grain market swings |

Viability is based on timing, technology and local resources
Honeywell Green Jet Fuel™

- Started under DARPA contract to develop process technology to produce military jet fuel from renewable sources.
- Leverages Ecofining process technology.
- Fuel meets stringent requirements for flight.
- Military has ordered up to 600,000 gallons.
- Extend to commercial aviation in partnership with OEMs.

DARPA Project Partners

Demonstration Flights
UOP Stage Gate Process for Process Development: Green Jet Process Offered Commercially

- Idea Generation
- Scoping
- Concept Selection
- Development
- First Commercial Unit
- Product Launch

- Idea Screening
- Project Selection
- Dev’t Approval
- Scale-up Approval
- Product Launch Approval
- Post-Launch Review

- Passed Gate 4 in December 2009
- Ready For Process Design #1 in 1Q 2010

Enables UOP to guarantee new technology
Renewable Jet (Bio-SPK) Chemistry

Feedstocks
- Rapeseed
- Tallow
- Jatropha
- Soybean
- Algal Oils
- Palm Oil
- Camelina
- Greases

- Natural oils contain oxygen, have high molecular weight.
- First reaction removes oxygen – product is diesel range waxy paraffins
- Second reaction “cracks” diesel paraffins to smaller, highly branched molecules
- End product is same as molecules already present in aviation fuel
- End product is independent of starting oil

Feedstock flexible, but with consistent product properties
Synthetic Jet Fuels

Fischer-Tropsch (FT)
- Coal
- Natural Gas
- Biomass

Hydroprocessed Renewable Jet (HRJ) from Bio-Oils
- Plant/Algae Oils

Synthetic Jet Fuels
- Crude Oil
- Syn-Crude
- Bio-Crude

Conventional Refinery Processes

Hydroprocessing

Slide courtesy of Mark Rumizen, FAA/CAAIFI
UOP Renewable Jet Process

- Feedstock flexible
- Optimised for 50% SPK yield
- Makes valuable hydrocarbon co-products
 - Green Diesel
 - Green Naphtha
 - Green LPG
- Ability to swing anywhere between ‘Max SPK’ and ‘Max Green Diesel’ production to meet market demand

Commercial scale, proven technology
Properties of SPK for Demo/Certification

<table>
<thead>
<tr>
<th>Description</th>
<th>Jet A-1 Specs</th>
<th>SPK (Jatropha)</th>
<th>SPK (Camelina)</th>
<th>SPK (Jatropha/Algae)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Point, °C</td>
<td>Min 38</td>
<td>46.5</td>
<td>42.0</td>
<td>41.0</td>
</tr>
<tr>
<td>Freezing Point, °C</td>
<td>Max -47</td>
<td>-57.0</td>
<td>-63.5</td>
<td>-54.5</td>
</tr>
<tr>
<td>JFTOT@300°C Filter dP, mmHg</td>
<td>max 25</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Tube Deposit Less Than</td>
<td>< 3</td>
<td>1.0</td>
<td><1</td>
<td>1.0</td>
</tr>
<tr>
<td>Net heat of combustion, MJ/kg</td>
<td>min 42.8</td>
<td>44.3</td>
<td>44.0</td>
<td>44.2</td>
</tr>
<tr>
<td>Viscosity, -20 deg C, mm²/sec</td>
<td>max 8.0</td>
<td>3.66</td>
<td>3.33</td>
<td>3.51</td>
</tr>
<tr>
<td>Sulfur, ppm</td>
<td>max 3000</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

- Over 20,000 US Gallons of Bio-SPK made for demonstration flights
- Certification supply work has uniquely allowed UOP to test the process and the catalyst at large Demo Capacity

Fuel Samples from Different Sources Meet Key Properties
Use of Green Jet Fuel: Semi-Synthetic Jet Fuel (SSJF)

- Green Jet Fuel can meet all the key properties of petroleum derived aviation fuel
 - Flash point
 - Freeze Point
 - Stability
 - Heat of Combustion
- SPK does not contain aromatics so must be blended with a source of aromatics, such as fossil jet fuel

A ‘drop-in’ biofuel for aviation
The Bio-SPK Program

- In 2008-2009, an industry team conducted testing of biofuel (Bio-SPK).
- The goal was to determine the feasibility of sustainable biofuels at blends up to 50%(v).

Certification-Qualification Phase
- ASTM D4054 Fuel Qualification Process

Slide courtesy of Mark Rumizen, FAA/CAAFI
ASTM D7566 Issued 1st Sept 09

D1655
5.1 Materials and Manufacture

D7566
Av Turbine Fuel Containing Syn HC’s

- **Annex 1**
 - Hydroprocessed SPK
 - Includes 50% FT Fuel

- **Annex for Each Class of Synthetic Blending Component**

- **Body of Spec Applies to Finished Semi-Synthetic Fuel**

- **Allow Re-Certification to D1655**

Blend Comp’s Criteria and Blend % Limits

Table 1
Blended Fuel Performance Properties

Table 1
Blended Fuel Performance Properties

Fuel Produced to D7566 Can Be Designated as D1655 Fuel

Annex 2
Other Adv Fuels or Processes

Annex 3
Other Adv Fuels or Processes

Certification of SPK to 50% targeted for early 2011

Slide courtesy of Mark Rumizen, FAA/CAAFI
Completed Flight Demonstrations

- **Successful ANZ Flight Demo** Date: Dec. 30, 2008
 Feedstock: Jatropha oil

- **Successful CAL Flight Demo** Date: Jan. 7, 2009
 Feedstock: Jatropha and algal oil

- **KLM European Test Flight**: November 23, 2009
 Feedstock: Camelina, Jatropha and algal oil
Military Testing

- Military demonstrations
 - Up to 600,000 gallons of fuel made from camelina, algae and animal fats for U.S. DESC
 - U.S. Air Force A-10 Thunderbolt II (camelina)
 - Navy F/A-18 Green Hornet (camelina)
 - Royal Netherlands Air Force Apache Helicopter (algae & used cooking oil)

Green Jet Fuel Meets Flight Specifications
US Military Supply Contracts

- US Military accelerating their biofuel certification program –
 - UOP is producing large volumes of jet fuel for an unprecedented HRJ-5/8 supply award from DESC

Contract awarded:

<table>
<thead>
<tr>
<th>Line item</th>
<th>Volume (gallons)</th>
<th>Type of Fuel</th>
<th>Feedstock</th>
<th>Prime</th>
<th>Producer</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40,000</td>
<td>Navy HRJ5</td>
<td>Camelina</td>
<td>Sustainable Oils</td>
<td>UOP</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>150,000</td>
<td>Navy HRJ5</td>
<td>Camelina</td>
<td>Sustainable Oils</td>
<td>UOP</td>
<td>Optional amount</td>
</tr>
<tr>
<td>3</td>
<td>100,000</td>
<td>AF HRJ8</td>
<td>Camelina</td>
<td>Sustainable Oils</td>
<td>UOP</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100,000</td>
<td>AF HRJ8</td>
<td>Tallow</td>
<td>UOP (Cargill FS)</td>
<td>UOP</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100,000</td>
<td>AF HRJ8</td>
<td>Camelina</td>
<td>Sustainable Oils</td>
<td>UOP</td>
<td>Optional amount</td>
</tr>
<tr>
<td>6</td>
<td>100,000</td>
<td>AF HRJ8</td>
<td>Tallow</td>
<td>UOP (Cargill FS)</td>
<td>UOP</td>
<td>Optional amount</td>
</tr>
<tr>
<td>7</td>
<td>1,500</td>
<td>Navy HRJ5</td>
<td>Algal oil</td>
<td>Solazyme</td>
<td>UOP</td>
<td></td>
</tr>
</tbody>
</table>

All from 2nd Generation Sustainable Feedstock
2nd Generation Renewable Jet Fuel: Fully Renewable Jet Fuel from Oils and Biomass

Natural Oils and Fats → Deoxygenation → Selective Cracking/Isomerization → Green Jet-range paraffins

Solid Biomass → Pyrolysis → Catalytic Stabilization/Deoxygenation → Jet Range cyclic hydrocarbons

Synthetic Paraffinic Kerosene

Renewable Jet Fuel

Renewable Jet Aromatics
The Future: 100% Renewable Jet

The Boeing hydroplane ran on 98% Bio-SPK and 2% renewable aromatics at SeaFair, Seattle in Aug 2009

<table>
<thead>
<tr>
<th></th>
<th>Jet A1 Spec</th>
<th>Starting SPK</th>
<th>Woody Pyrolysis Oil Aromatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeze Point (°C)</td>
<td>-47</td>
<td>-63</td>
<td>-53</td>
</tr>
<tr>
<td>Flash Point (°C)</td>
<td>39</td>
<td>42</td>
<td>52</td>
</tr>
<tr>
<td>Density (g/mL)</td>
<td>0.775</td>
<td>0.753</td>
<td>0.863</td>
</tr>
</tbody>
</table>

Woody Pyrolysis oil aromatics produced through a UOP-NREL-PNNL CRADA
Summary

- UOP’s Renewable Jet Process was rapidly developed through key collaborations and by leveraging UOP’s world class hydroprocessing technology and expertise
- UOP’s Renewable Jet Process is ready to produce Bio-SPK in commercial quantities
- A multidisciplinary team succeeded in producing and testing sustainable SPK
- Certification of SPK to use in blends up to 50% is planned for early 2011.
Acknowledgements

- AFRL
 - Robert Allen
 - John Datko
 - Tim Edwards
 - Don Minus
- Air New Zealand
 - Grant Crenfeldt
- Boeing
 - Billy Glover
 - James Kinder
 - Mike Henry
 - Darrin Morgan
 - Tim Rahmes
 - Dale Smith
- CFM
 - Jerome A. Juenger
- Continental Airlines
 - Gary LeDuc
 - Leah Raney
 - George Zombanakis
- GE
 - Steve Csonka
 - Mike Epstein
 - M. Gurhan Andac
- Japan Airlines
 - Takuya Ishibashi
 - Koichiro Nagayama
 - Yasunori Abe
- NREL
 - Richard Bain
 - Nikki Universal
 - Yasushi Fujii
 - Masaru Marui
- PNNL
 - Doug Elliot
 - Don Stevens
- Pratt & Whitney
 - Tedd Biddle
 - Mario Debeneto
 - Kevin Reilly
- Rolls Royce
 - Chris Lewis
 - Dave M. Lambert
- Sustainable Oils
 - Scott Johnson
- Targeted Growth
 - Tom Todaro
- Honeywell / UOP
 - Amar Anumakonda
 - Roy Bertola
 - Andrea Bozzano
 - Tim Brandvoid
 - Michelle Cohn
 - Graham Ellis
 - Matthew Griffiths
 - Jennifer Holmgren
 - Tom Kalnes
 - Joseph Kocal
 - Steve Lupton
 - Prabakar Nair
 - Sunny Nguyen
 - Randy Williams
 - Jim Woodger

Muchas Gracias!
Preguntas?
claudio.bertelli@uop.com

DOE, Project DE-FG36-05GO15085 Paul Grabowski
DARPA, Project W911NF-07-C-0049 Dr. Douglas Kirkpatrick